If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x-5+x^2=0
a = 1; b = 5; c = -5;
Δ = b2-4ac
Δ = 52-4·1·(-5)
Δ = 45
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{45}=\sqrt{9*5}=\sqrt{9}*\sqrt{5}=3\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-3\sqrt{5}}{2*1}=\frac{-5-3\sqrt{5}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+3\sqrt{5}}{2*1}=\frac{-5+3\sqrt{5}}{2} $
| -5-w=-29 | | 30-10x=60 | | 54=x+(3x-2) | | c-13=24 | | 7^(9x)=12^(-x-8) | | -7+x=88 | | 9x-10=73 | | g+1=49 | | 1/8(x-15=4 | | -15-6x=24 | | x/54=2 | | -2(4w+2)=w+32 | | 10(x-8)=18 | | 6c+4=26 | | !!!!5x2–3x!+!7!=!0 | | -4(4r+1)=-6+r | | 100x+2=40x+4 | | 3+()-5x9=63 | | -2+14a=8+9a | | -8x-7+6x=29 | | (6x+5)+(11x-5)+x=180 | | (3x-x)/5=2.6/5 | | -2u+3+u=18 | | 4(c-1)=-12 | | 22+u+18=11+16u-1 | | 2x-3+5x=27+x | | 4v-5=3v+6 | | 2x-3+5x=27+5 | | 112+z-44=16+15z-32 | | -2(3x-8)=-5x+15 | | 4x+8+4x+8+2x+2x=0 | | y+17=2y+1 |